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Abstract. Recent theoretical studies of chaotic scattering have encountered ensembles of
random matrices in which the eigenvalue probability density function contains a one-body factor
with an exponent proportional to the number of eigenvalues. Two such ensembles have been
encountered; an ensemble of unitary matrices specified by the so-called Poisson kernel, and the
Laguerre ensemble of positive definite matrices. Here, we consider various properties of these
ensembles. Jack polynomial theory is used to prove a reproducing property of the Poisson kernel,
and a certain unimodular mapping is used to demonstrate that the variance of a linear statistic
is the same as in the Dyson circular ensemble. For the Laguerre ensemble, the scaled global
density is calculated exactly for all even values of the parameterβ, while for β = 2 (random
matrices with unitary symmetry), the neighbourhood of the smallest eigenvalue is shown to be
in the soft edge universality class.

1. Introduction

In the theory of random matrices, a primary task is to compute the probability density
function (PDF) for the eigenvalues from knowledge of the PDF for the ensemble of matrices.
Two examples of random matrix ensembles of interest in this paper are Dyson’s [Dys62]
circular ensembles of symmetric, unitary and self-dual quaternion unitary random matrices
(labelled byβ = 1, 2 and 4 respectively), and the Laguerre ensemble of random Wishart
matricesA = X†X, whereX is a random(M × N) matrix (M > N ) which has either
real (β = 1), complex (β = 2) or quaternion real (β = 4) Gaussian random elements. In
the circular ensemble, the PDF for the matrices is uniquely specified by requiring that it
be uniform and unchanged by mappings of the formU 7→ VUV ′, whereV is an arbitrary
(N ×N) unitary matrix andV ′ = V T for β = 1, V ′ is arbitrary forβ = 2 andV ′ = V D for
β = 4 (D denotes the quaternion dual). In the Laguerre ensemble, the distribution of the
elements ofX are taken to be the GaussianA e−βTr(X†X)/2 which is equivalent to choosing
each element independently with a Gaussian distributionA′ e−β|xjk |

2/2.
The corresponding PDF for the eigenvalues eiθj , j = 1, . . . , N in the circular ensemble

is
1

CβN

∏
16j<k6N

|eiθk − eiθj |β (1.1)

while for the Laguerre ensemble the PDF is given by

1

C ′aβN

N∏
j=1

e−βλj /2λaβ/2j

∏
16j<k6N

|λk − λj |β λj > 0 (1.2)

0305-4470/98/296087+15$19.50c© 1998 IOP Publishing Ltd 6087



6088 T H Baker et al

wherea := M − N + 1− 2/β. In both cases the eigenvalue PDFs can be written in the
form of a Boltzmann factor for a classical gas, with potential energy consisting of one- and
two-body terms only and interacting at inverse temperatureβ

exp

(
−β

( N∑
j=1

V1(xj )+
∑

16j<k6N
V2(xj , xk)

))
. (1.3)

Thus, for the circular ensemble

V1(x) = 0 V2(x, y) = −log |eix − eiy | (1.4)

while for the Laguerre ensemble

V1(x) = x

2
− a

2
logx V2(x, y) = −log |x − y| (1.5)

which displays the well known fact that the analogous classical gas has a two-body
logarithmic potential. The logarithmic potential is special in that it is the Coulomb potential
between like charges in two dimensions. In (1.4) the two-dimensional charges are confined
to a unit circle, while in (1.5) the two-dimensional charges are free to move on the half line
x > 0, but are confined to the neighbourhood of the origin by the one-body potential.

In this work we will focus attention on a sub-class of random matrix ensembles
with eigenvalue PDFs of the form (1.3) in which the one-body potential contains a term
proportional toN log |1 − µ∗ eix | (unitary matrices) or−N log |x| (Laguerre ensemble).
Again the two body term is logarithmic. In the classical gas these one-body potentials can
be interpreted as being due to an external fixed charge at the point 1/µ∗ in the complex
plane with strength proportional to−N (unitary matrices), and as an external charge fixed
at the origin of strength proportional toN (Laguerre ensemble). We see from (1.2) that an
example of a random matrix of this type in the Laguerre case is a Wishart matrix withX

a rectangular matrix in which the number of columns is some fixed fraction of the number
of rows. In the theory of random unitary matrices, this type of eigenvalue PDF results as
a special case of the the ensemble of random matrices defined by the Poisson kernel

1

C

det(1− S̄S̄†)β(N−1)/2+1

|det(1− S̄†S)|β(N−1)+2
(1.6)

where the notation̄S denotes the average ofS. Random unitary matrices with this PDF occur
in the study of scattering problems in nuclear physics [MPS85] and mesoscopic systems
[Bro95, FS97]. In the casēS = 0, this reduces to the PDF specifying Dyson’s circular
ensemble (all members equally probable). In the case thatS̄ = µ1N , |µ| < 1 (1N denotes
the (N ×N) unit matrix), the corresponding eigenvalue PDF is given by

1

CβN

N∏
j=1

(1− |µ|2)βa′/2
|1− µ∗ eiθ |βa′

∏
16j<k6N

|eiθk − eiθj |β (1.7)

wherea′ = (N − 1+ 2/β) andCβN is as in (1.1), and so in the classical gas picture there
is a fixed charge of opposite sign at the point 1/µ∗, and the magnitude of this charge is
indeed proportional toN .

In section 2 we will consider the eigenvalue PDF (1.7) for the Poisson kernel. First,
the special reproducing property of the PDFs (1.6) and (1.7) forβ = 1, 2 and 4 will be
revised, and extended to allβ > 0 in the case of (1.7). Our tool here is Jack polynomial
theory [Mac95]. Then, we will consider the effect of theN -dependent exponent in (1.7) on
the one- and two-body correlation functions, as well as on the fluctuation formula for the
variance of a linear statistic.
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In section 3 a physical problem giving rise to the Laguerre ensemble in whicha in (1.2)
is equal toN will be revised. Then we will revise known theorems in the casesβ = 1 and
2 for the global density and the distribution of the largest and smallest eigenvalues. Next,
known integral formulae for the density [BF97a] at general evenβ, deduced from the theory
of generalized Selberg integrals [Kan93] and their relationship to Jack polynomial theory,
will be analysed in the appropriate limit to deduce that the formula for the global density
holds independently ofβ. For the special couplingβ = 2 the local distribution functions
in the neighbourhood of the smallest eigenvalue are analysed and shown to belong to the
universality class of the soft edge, giving rise to the Airy kernel [For93a, TW94a, KF97b].
We conclude the section with an analysis of some nonlinear equations [TW94a, TW94b],
which explicitly demonstrate the universality of the distribution of the smallest eigenvalue.

2. The Poisson kernel

2.1. Physical origin of the Poisson kernel

The scattering matrix forN channels entering and leaving a chaotic cavity via a non-ideal
lead containing a tunnel barrier has as its PDF the Poisson kernel (1.6) [Bro95]. Also, in
scattering problems in nuclear physics, (1.6) has been used [MPS85] to describe situations
in which the average of the scattering matrix is non-zero. It was in the latter problem that
the Poisson kernel first appeared in an application of random matrix theory. In [MPS85] a
requirement for the PDF of the ensemble of scattering matrices was the special reproducing
property

f (S̄) := f (〈S〉) = 〈f (S)〉 (2.1)

for f analytic inS. It was noted that a result of Hua [Hua63] gives that

f (S̄) = 1

C

∫
f (S)

det(1N − S̄S̄†)β(N−1)/2+1

|det(1N − S̄†S)|β(N−1)+2
µ(dS) (2.2)

whereµ(dS) is the invariant measure associated with the Dyson circular ensemble, and thus
that the Poisson kernel exhibits the reproducing property (2.1).

2.2. The reproducing property for generalβ

To make any sense out of (2.2) it is necessary thatβ = 1, 2 or 4, so that the measureµ(dS)
has meaning. However, in the caseS̄ = µ1N , the corresponding eigenvalue PDF (1.7) can
be interpreted as a Boltzmann factor and it makes sense to consider allβ > 0. In this
case, forβ = 1, 2 and 4, (1.7) used in (2.2) gives that the reproducing property restricted
to analytic functions of the eigenvalues eiθj reads

f (µ, . . . , µ) = 1

CβN

N∏
l=1

∫ 2π

0
dθl
(1− |µ|2)βa′/2
|1− µ∗ eiθl |βa′ f (e

iθ1, . . . ,eiθN )
∏

16j<k6N
|eiθk − eiθj |β. (2.3)

This equation is well defined for allβ > 0, but its validity has only been established for
β = 1, 2 and 4. Here we will establish its validity for generalβ > 0, using the properties
of the orthogonal polynomials associated with the PDF (1.1). Note that in the caseN = 1
(2.3) reads

f (µ) = 1

2π

∫ 2π

0

(1− |µ|2)
|1− µ∗ eiθ |2f (e

iθ ) dθ (2.4)
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which is the celebrated Poisson formula on a circle, giving the value of an analytic function
f for |µ| < 1 in terms of its value on the unit circle. Thus (2.3) can be regarded as an
N -dimensional generalization of this result.

The multivariable orthogonal polynomials corresponding to (1.1) are the symmetric Jack
polynomialsP (2/β)κ (z) [Sta89, Mac95], as they possess the orthogonality property

N∏
l=1

∫ 2π

0
dθl P

(2/β)
κ (z)P (2/β)σ (z∗)

∏
16j<k6N

|eiθk − eiθj |β = Nκδκ,σ (2.5)

and form a complete set for the space of analytic functions. Here the labelsκ andσ are
partitions consisting ofN parts or less, andz := (eiθ1, . . . ,eiθN ). The normalizationNκ is
given by

Nκ
N0
= P

(2/β)
κ (1N)d ′κ

[1+ β(N − 1)/2](2/β)κ

(2.6)

where

d ′κ :=
∏
s∈κ

(
2

β
a(s)+ l(s)+ 1

)
[u](α)κ :=

N∏
j=1

0(u− (β/2)(j − 1)+ κj )
0(u− (β/2)(j − 1))

.

The notations ∈ κ refers to the diagram of the partitionκ, anda(s) = κi − j is the arm
length whilel(s) = κ ′j − i is the leg length (κ ′ refers to the conjugate partition ofκ); see
for example [Mac95]. The normalizationN0 is the same quantity as the normalizationCβN
in (1.1), and has the explicit value

N0 = CβN = (2π)N (Nβ/2)!
(β/2)!N

. (2.7)

The quantityP (2/β)κ (1N) in (2.6) also has an explicit evaluation [Sta89, Mac95, BF97b], but
it suits our purposes to leave it unevaluated.

With these preliminaries, we now pose the problem of specifying the kernelK(w, z∗),
w = (eiφ1, . . . ,eiφN ), Im(φj ) > 0, which is an analytic function ofz∗, and has the
reproducing property

f (w) =
N∏
l=1

∫ 2π

0
dθl K(w, z

∗)f (z)
∏

16j<k6N
|eiθk − eiθj |β (2.8)

for f analytic and symmetric inw1, . . . , wN . The proof of (2.3) will then consist first of
evaluatingK(w, z∗) at w = (µ, . . . , µ), then transforming equation (2.8) so thatK(w, z∗)
becomes real. Using the orthogonality property (2.5), as well as the completeness of
{P (2/β)κ (z)} for analytic functions, it is a simple exercise to check that the required kernel
K is uniquely given by

K(w, z∗) =
∑
κ

P
(2/β)
κ (w)P

(2/β)
κ (z∗)

Nκ

= 1

N0

∑
κ

[1+ β(N − 1)/2](2/β)κ

P
(2/β)
κ (w)P

(2/β)
κ (z∗)

d ′κP
(2/β)
κ (1N)

(2.9)

where the second equality follows from (2.6). However, in general, the generalized
hypergeometric function1F

(2/β)
0 (a;w, z∗) is defined by

1F
(2/β)
0 (a;w, z∗) =

∑
κ

[a](2/β)κ

P
(2/β)
κ (w)P

(2/β)
κ (z∗)

d ′κP
(2/β)
κ (1N)

(2.10)
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so we have

K(w, z∗) = 1

N0
1F

(2/β)
0 (1+ β(N − 1)/2;w; z∗). (2.11)

In general, there is no known expression for1F
(2/β)
0 (a;w, z∗) in terms of elementary

functions. However, the casew = (µ, . . . , µ) is an exception, for then we have

1F
(2/β)
0 (a;w, z∗)|w=(µ,...,µ) = 1F

(2/β)
0 (a;µz∗) :=

∑
κ

µ|κ|[a](2/β)κ P
(2/β)
κ (z∗)

d ′κ
. (2.12)

The significance of this is that1F
(2/β)
0 (a;µz∗) can be summed according to the generalized

binomial formula [Kan93]

1F
(2/β)
0 (a;µz∗) =

N∏
j=1

1

(1− µz∗j )a
|µzj | < 1. (2.13)

Comparing (2.11)–(2.13) we therefore have

K(w, z∗)|w=(µ,...,µ) = 1

N0

N∏
j=1

1

(1− µz∗j )1+β(N−1)/2
. (2.14)

Although this is an explicit solution to the problem of determining the kernel in (2.8) in
the case wherew = (µ, . . . , µ), it does not immediately establish (2.3) as the kernel (2.14)
is not real. Note that in the caseN = 1, (2.14) is the Cauchy kernel from elementary
complex analysis. For generalN , to obtain a real (Poisson) kernel from the Cauchy kernel,
we proceed as in the one-dimensional case and simply make the replacement

f 7→
N∏
j=1

1

(1− µ∗zj )1+β(N−1)/2
f

in (2.8) withw = (µ, . . . , µ). Formula (2.3) results, thus establishing its validity for general
β > 0.

2.3. Fluctuation formulae

In the application of random matrix theory, an important class of observables are the linear
statisticsA =∑N

j=1 a(λj ). The first two moments of these statistics are given by

〈A〉 =
∫ 2π

0
ρ(1)(θ)a(θ) dθ (2.15)

Var(A) :=
∫ 2π

0
dθ1 a(θ1)

∫ 2π

0
dθ2 a(θ2)S(θ1, θ2) (2.16)

whereS(λ1, λ2) denotes the structure function

S(λ1, λ2) := ρT
(2)(λ1, λ2)+ ρ(1)(λ1)δ(λ1− λ2)

with ρ(1) denoting the density andρT
(2) denoting the truncated two-particle distribution

function. In this subsection these quantities will be considered for the eigenvalue PDF
(1.7).
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It is instructive to first consider the case whereµ = 0, when (1.7) reduces to the
eigenvalue PDF (1.1) for the circular ensemble. In this case [For95]

ρ(1)(θ
(0)) = N

2π
(2.17)

S(θ
(0)
1 , θ

(0)
2 ) ∼

N→∞
− 1

βπ2

∂2

∂θ
(0)
1 ∂θ

(0)
2

log |sin(θ(0)1 − θ(0)2 )/2| (2.18)

(the use of the superscript(0) indicates thatµ = 0 in (1.7)), where in the asymptotic
expression (2.18) all oscillatory terms, each of which have a period some integer multiple
of 2π/N , are ignored. For example, we have the exact result (see e.g. [Meh91])

ρT
(2)(θ

(0)
1 , θ

(0)
2 ) = −

(
1

2π

)2 sin2N(θ
(0)
1 − θ(0)2 )/2

sin2(θ
(0)
1 − θ(0)2 )/2

= −1

2

(
1

2π

)2( 1

sin2(θ
(0)
1 − θ(0)2 )/2

− cosN(θ(0)1 − θ(0)2 )

sin2(θ
(0)
1 − θ(0)2 )/2

)
.

Ignoring the oscillatory term with the factor of cosN(θ(0)1 − θ(0)2 ) gives

ρT
(2)(θ

(0)
1 , θ

(0)
2 ) ∼

N→∞
− 1

2(2π)2
1

sin2(θ
(0)
1 − θ(0)2 )/2

= − 1

2π2

∂2

∂θ
(0)
1 ∂θ

(0)
2

log |sin(θ(0)1 − θ(0)2 )/2|

valid for θ(0)1 6= θ(0)2 . The validity of (2.18) forθ(0)1 = θ(0)2 is then deduced by noting that if
we write (define)∫ 2π

0

∂2

∂θ
(0)
1 ∂θ

(0)
2

log |sin(θ(0)1 − θ(0)2 )/2| dθ(0)1 =
∂

∂θ
(0)
2

∫ 2π

0

∂

∂θ
(0)
1

log |sin(θ(0)1 − θ(0)2 )/2| dθ(0)1

(2.19)

then this integral vanishes. This is the perfect screening sum rule for the underlying log-gas
system, and is a fundamental requirement ofS(θ

(0)
1 , θ

(0)
2 ) [Mar88].

Substituting (2.18) in (2.16), interchanging the order of differentiation and integration
according to (2.19), and using the Fourier expansion

log |sin(θ (0)1 − θ(0)2 )/2| =
∞∑

p=−∞
αp eip(θ(0)1 −θ(0)2 )

αp = − 1

2|p| (p 6= 0) α0 = −2π log 2

allows (2.16) to be evaluated as

Var(A)(0) = 4

β

∞∑
n=1

nana−n a(θ) =
∞∑

n=−∞
an einθ . (2.20)

This has the well known feature of being independent ofN—fluctuations are therefore
strongly suppressed. Furthermore, it has been rigorously proved by Johansson [Joh88,
Joh98] that the corresponding full distribution of the linear statisticA is given by the
central limit-type theorem

Pr(u = A) ∼
N→∞

1

(2πσ 2)1/2
e−(u−〈A〉)

2/2σ 2
(2.21)

where 〈A〉 is given by (2.15) with the substitution (2.17), andσ 2 = Var(A) as given by
(2.20).
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Let us now consider the situation for generalµ, |µ| < 1. It is well known [Hua63],
and is simple to verify, that under the transformation

eiθj = eiθ(0)j − µ
1− µ∗ eiθ(0)j

(2.22)

(note that the right-hand side has unit modulus and this mapping is one-to-one), the PDF
for generalµ is transformed into the PDF withµ = 0 according to
N∏
j=1

(
1− |µ|2
|1− µ∗ eiθj |2

)β(N−1)/2+1 ∏
16j<k6N

|eiθk − eiθj |β dθ1 . . .dθN

=
∏

16j<k6N
|eiθ(0)k − eiθ(0)j |β dθ(0)1 . . . dθ(0)N . (2.23)

This means that the correlation functions for generalµ can be obtained from the correlation
functions forµ = 0 by applying the inverse of the transformation (2.22)

eiθ(0)j = µ+ eiθj

1+ µ∗ eiθj
(2.24)

and noting that

dθ(0) = (1− |µ|2)
|1− µ∗ eiθ |2 dθ. (2.25)

Hence, from (2.17), we have

ρ(1)(θ) = N

2π

(1− |µ|2)
|1− µ∗ eiθ |2 (2.26)

independent ofβ, and so from (2.15),

〈A〉 = N

2π

∫ 2π

0

(1− |µ|2)
|1− µ∗ eiθ |2ρ(θ) dθ. (2.27)

For the structure function, substituting (2.24) and (2.25) in (2.18) gives

S(θ
(0)
1 , θ

(0)
2 ) dθ(0)1 dθ(0)2 : = − 1

βπ2

(
∂2

∂θ
(0)
1 ∂θ

(0)
2

log |eiθ(0)1 − eiθ(0)2 |
)

dθ(0)1 dθ(0)2

= − 1

βπ2

(
∂2

∂θ1∂θ2
log

∣∣∣∣ eiθ1 − eiθ2

|1+ µ∗ eiθ1||1+ µ∗ eiθ2|
∣∣∣∣) dθ1 dθ2

= − 1

βπ2

(
∂2

∂θ1∂θ2
log |eiθ1 − eiθ2|

)
dθ1 dθ2. (2.28)

ThusS(θ1, θ2) for generalµ is identical toS(θ(0)1 , θ
(0)
2 ) for µ = 0, and consequently

Var(A)(0) = Var(A). (2.29)

This fact illustrates a universality feature of the underlying log-gas: Var(A) is invariant with
respect to the particular one body potential modifying (1.1), provided the corresponding one-
body density is a well behaved function.

Finally, we note that (2.29) can be demonstrated via a numerical experiment. The
experiment is performed by first generating random unitary matrices with uniform
distribution (matrices from the CUE). This can be done by diagonalizing matrices from
the GUE (random Hermitian matrices): the matrix of eigenvectors, when multiplied by a
diagonal matrix with entries eiθj , (j = 1, . . . , n) whereθj is a random angle between 0 and



6094 T H Baker et al

2π with uniform distribution, gives a matrix belonging to the CUE. Next, we calculate the
eigenvalues of each matrix (which will have a distribution (1.1) withβ = 2), and transform
them according to (2.22) with a specific value ofµ. The resulting eigenvalues will have a
distribution as on the left-hand side of (2.23). For each setk of eigenvalues{eiθj }j=1,...,N we
then calculateAk := ∑N

j=1 a(θj ) for some particular choices ofa. From the resulting list
of values{Ak}, the empirical mean and standard deviation are calculated according to the
usual formulae. In table 1 we present the result of performing this numerical experiment
with N , the dimension of the unitary matrix, equal to 15, anda(θ) = cosjθ (j = 1, . . . ,5).
These empirical values are compared with the theoretical prediction for the variance in the
limit N → ∞ as given by (2.20) (note that witha(θ) = cosjθ , aj = a−j = 1/2, an = 0
otherwise; thus (2.20) gives Var(A) = j/2).

Table 1. The second column contains the empirical variance of the quantity
∑N
j=1 a(θj ), with

a(θ) as specified. This was calculated for 500(15× 15) matrices with eigenvalue distribution
given by the left-hand side of (2.23) withβ = 2 andµ = 0.5. The final column contains the
theoretical variance for the same quantity in theN →∞ limit.

Empirical Theoretical
a(θ) Var(A) Var(A)

cosθ 0.509 0.5
cos 2θ 0.972 1
cos 3θ 1.6 1.5
cos 4θ 1.8 2
cos 5θ 2.6 2.5

3. Laguerre ensemble with anN -dependent exponent

3.1. Motivation

Recently a number of authors [FS96, GMB96, BFB97] have considered the problem of the
distribution of the eigenvalues of the Wigner–Smith matrixQ = −ih̄S−1∂S/∂E. HereS
refers to the scattering matrix coupled to a perfect lead which supportsN channels of the
same energyE. For arbitraryN it was found in [BFB97] that for each of the three possible
symmetries ofS, orthogonal (β = 1), unitary (β = 2) and symplectic (β = 4), the PDF for
the reciprocal of the eigenvalues ofQ is given by (1.2) witha = N . This motivates a study
of some of the properties of the distribution functions and fluctuation formulae associated
with (1.2) for generala = YN , Y > 0.

3.2. Forβ = 1 and 2

As remarked in the introduction, the PDF (1.2) forβ = 1, 2 and 4 is realized as the
eigenvalue PDF of random Wishart matricesA = X†X, whereX has dimension(M ×N).
For β = 1 and 2, and witha proportional toN , the limiting form of the global density
and the statistical properties of the largest and smallest eigenvalues have been extensively
studied (see [Ede88] and references therein). In particular, with

a = YN (3.1)
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it is known that the global eigenvalue density is given by

lim
N→∞

ρ(4Nx) =


1

πx

√
(x − t1(Y ))(t2(Y )− x) t1(Y ) < x < t2(Y )

0 otherwise
(3.2)

where

t1(Y ) = 1
4(
√

1+ Y − 1)2 t2(Y ) = 1
4(
√

1+ Y + 1)2. (3.3)

In qualitative terms, the result (3.2) says that the support of the density, which is(0, 1)
whenY = 0, is repelled from the origin and elongated asY increases. This is consistent
with the log-gas interpretation of (1.2) witha given by (3.1), as then there is an external
charge of strengthYN placed at the origin. This charge repels theN mobile charges of
unit strength away from the origin. The fact that (3.2) is independent ofβ is also consistent
with the log-gas interpretation. In fact, macroscopic electrostatics says that the one-body
potential in (1.5) results from a neutralizing background charge densityρb(y) according to

x

2
− YN

2
logx + C =

∫
I

ρb(y) log |x − y| dy x ∈ I (3.4)

whereI is an interval inR+. The quantityβ does not appear in this equation, soρb(y) is
independent ofβ. However, to leading order the particle density will equal the background
density, as in general Coulomb systems to strongly suppress charge fluctuations [Mar88].
The expected independence of (3.2) onβ follows.

3.3. For evenβ

For evenβ, an exactβ-dimensional integral representation of the density in the finite system
is available [For94, BF97a], which allows the global density limit to be taken explicitly.

Now, in a system of(N + 1) particles, the one-body densityρ(x) in the Laguerre
ensemble is given by

ρN+1(x) := N + 1

ZN+1(a, β)
e−βx/2xβa/2IN(a, β; x) (3.5)

where

ZN+1(a, β) :=
N+1∏
l=1

∫ ∞
0

dxl e−βxl/2xβa/2l

∏
16j<k6N+1

|xk − xj |β (3.6)

IN(a, β; x) :=
N∏
l=1

∫ ∞
0

dxl |x − xl|β e−βxl/2xβa/2l

∏
16j<k6N

|xk − xj |β. (3.7)

The normalization (3.6) is a well known limiting case of the Selberg integral, and has the
exact evaluation (see e.g. [Ask80])

ZN(a, β) =
(

2

β

)N(1+βa/2)+βN(N−1)/2 N−1∏
j=0

0(1+ β(j + 1)/2)0(1+ β(j + a)/2)
0(1+ β/2) . (3.8)

Notice that for evenβ the integral (3.7) is a polynomial inx. In this case (3.7) has been
shown to be expressible in terms of a certain generalized Laguerre polynomial based on
Jack polynomials [For94]. Furthermore, this generalized Laguerre polynomial has a different
integral representation, which allows theN -dimensional integral (3.7) to be expressed as a
β-dimensional integral. This reads [BF97a] as

1

ZN(a + 2, β)
IN(a, β; x) = 1

Q(a, β)
|f (a, β; x)| (3.9)
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where

f (a, β; x) :=
∫
C1

dt1 . . .
∫
Cβ

dtβ
β∏
j=1

extj t−N−3+2/β
j (1− tj )a+N+2/β−1

∏
16j<k6β

(tk − tj )4/β .

(3.10)

The contours of integration in (3.10) must be simple loops which start atx = 1 and enclose
the origin, and the quantityQ(a, β) in (3.9) is chosen so that atx = 0, the right-hand
side equals 1 (the left-hand side has this property). Also, the modulus sign in (3.9) has
been included for convenience to eliminate terms of unit modulus which otherwise occur
in Q(a, β); this is valid forx ∈ R since then the left-hand side is positive. Choosing each
Cj in (3.10) to be the unit circle gives

Q(a, β) = (2π)βMβ(a + 2/β − 1, N,2/β) (3.11)

where

MN(a
′, b′, c′) :=

N∏
l=1

∫ 1/2

−1/2
eπiθl (a

′−b′)|1+ e2πiθl |a′+b′
∏

16j<k6N
|e2πiθk − e2πiθj |2c′

=
N∏
j=1

0(a′ + b′ + 1+ (j − 1)c′)0(1+ c′j)
0(a′ + 1+ (j − 1)c′)0(b′ + 1+ (j − 1)c′)0(1+ c′) (3.12)

(the integralMN is due to Morris [Mor82]).
Our interest is in the large-N asymptotic form ofρN+1(4Nx)|a=YN , which from (3.5) and

(3.9) requires the large-N form of f (YN, β; x). The necessary technique is a generalized
saddle point analysis as introduced in [For94] and presented in detail in [BF97a]. The
saddle points occur at the stationary points of

N(4xtj − log tj + (Y + 1) log(1− tj )) (3.13)

which is theN -dependent term of the integrand off (YN, β; x) when expressed as an
exponential. A simple calculation finds that there are two stationary points,t+ and t− say,
given by

t± = x − Y/4± ((x − Y/4)2− x)1/2
2x

. (3.14)

Note thatt+ = t∗− for

(x − Y/4)2− x < 0. (3.15)

Assuming (3.15), following the strategy of [BF97a], the leading large-N asymptotic
behaviour is obtained by deformingβ/2 of the contours throught+, and the remainingβ/2

of the contours throught− (this introduces a factor of
(

β

β/2

)
to account for the number of

ways of dividing theβ contours into these two classes). The calculation now proceeds in a
conventional way, with the exponent (3.13) being expanded aboutt± to second order, and
theN -independent terms in the integrand replaced by their value att+ or t− as appropriate.
After this step we have

|f (YN, β; x)| ∼
(
β

β/2

)
|g2(t+, Y )|β

∣∣∣∣ ∫ ∞−∞ dt1 . . .
∫ ∞
−∞

dtβ/2 e−(N/2)g1(t+,Y )(t21+···+t2β/2)

×
∏

16j<k6β/2
|tk − tj |4/β

∣∣∣∣2=( β

β/2

)
|g2(t+, Y )|β |Ng1(t+, Y )|−β+1(Vβ/2(2/β))

2

(3.16)
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where

g1(t+, Y ) := 1

t2+
− 1+ Y
(1− t+)2 (3.17)

g2(t+, Y ) := eN(4xt+−log t++(Y+1) log(1−t+))t−3+2/β
+ (1− t+)2/β−1(t+ − t−) (3.18)

VN(c) :=
∫ ∞
−∞

dt1 . . .
∫ ∞
−∞

dtN e−(1/2)(t
2
1+···+t2N )

∏
16j<k6N

|tk − tj |2c

= (2π)N/2
N−1∏
j=0

0(1+ c(j + 1))

0(1+ c) . (3.19)

The equality in (3.16) follows from a simple change of variables, while (3.19) is known as
Mehta’s integral, and can be evaluated as a limiting case of the Selberg integral [Ask80]
(for a direct evaluation see [Eva94]).

From definition (3.14) we have that

|x+|2 = 1

4x
|1− x+|2 = 1+ Y

4x
|t+ − t−|2 = 1

x2
(x − (x − Y/4)2)

and use of these results in formulae (3.17) and (3.18) definingg1 andg2 shows that

|g2(t+, Y )|β
|g1(t+, Y )|β−1

= e2βN(x−Y/4)(1+ Y )(1+Y )Nβ/2(4x)−YNβ/2(1+ Y )1/2 1

x
(x − (x − Y/4)2)1/2.

(3.20)

Furthermore, from (3.8)

ZN(a + 2, β)

ZN+1(a, β)
=
(

2

β

)Nβ−(β/2)
0(1+ (β/2))

0(1+ (β/2)(N + 1))

× 0((β/2)(a +N + 1)+ 1)

0((β/2)a + 1)0((β/2)(a + 1)+ 1)
(3.21)

while using (3.12) in (3.11) and by comparison with (3.19) shows that

1

Q(a, β)
= 1

(2π)β/2Vβ(2/β)

β∏
j=1

0(a + (2/β)j)0(N + 1+ (2/β)(j − 1))

0(a +N + (2/β)j) (3.22)

and using (3.19) gives

(Vβ/2(2/β))2

Vβ(2/β)
= (β/2)β/20(1+ (β/2))

0(1+ β) . (3.23)

With (3.9) substituted in (2.23), the remaining task is to use Stirling’s formula to compute
the leading large-N asymptotic behaviour of (3.21) and (3.22) witha = YN . Performing
this task, and substituting the resulting expression together with (3.20) and (3.23) in (3.9),
shows that forx such that (3.15) is true

lim
N→∞

ρN+1(4Nx)|a=YN = 1

2πx
(x − (x − Y/4)2)1/2. (3.24)

Outside the interval (3.15), i.e. outsidex ∈ [(1/2)(1+ (Y/2)−√1+ Y ), (1/2)(1+ (Y/2)+√
1+ Y )], this limit must vanish. This is seen from the fact that the density is positive, and

must satisfy the normalization∫ ∞
0
ρN+1(4Nx) dx ∼ 1

4
which is satisfied by the right-hand side of (3.24). The result (3.24) for the scaled density,
established for evenβ, is identical to the result in (3.2) known forβ = 1 and 2, as expected.
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4. The distribution functions in the neighbourhood of the smallest eigenvalue

4.1. Then-point distributions

For fixedN andβ = 1, 2 or 4, the exact expressions for the generaln-point distribution
function in the Laguerre ensemble are known [Bro65, NW91, NF95]. Witha = YN and
N large, it is natural to move the origin to the (mean) location of the smallest eigenvalue,
and to scale the eigenvalues so that the mean spacing near the spectrum edge isO(1).
One anticipates that the limitingn-point distribution function will correspond to then-point
distribution function for the so-called soft edge, which is the edge of the spectrum for
the Gaussian random matrix ensemble, with the eigenvalues appropriately scaled. For the
one-body densities andβ = 1 and 2, this has been established by Feinberg and Zee [FZ97].

In quantitative terms, we expect that for appropriateν(N) independent ofβ

lim
N→∞

(ν(N))nρ(n)(N(1−
√

1+ Y )2− ν(N)x1, . . . , N(1−
√

1+ Y )2− ν(N)xn)
= ρsoft

(n) (x1, . . . , xn). (4.1)

On the left-hand side,ρ(n) refers to then-point distribution function for the Laguerre
ensemble witha = YN . Note from (3.2) and (3.24) thatN(1−√1+ Y )2 is the location
of the smallest eigenvalue (to leading order inN ). On the right-hand side

ρsoft
(n) (x1, . . . , xn) := lim

N→∞

(
1

21/2N1/6

)n
×ρ(n)

(
(2N)1/2+ x1

21/2N1/6
, . . . , (2N)1/2+ xn

21/2N1/6

)
(4.2)

where hereρ(n) refers to then-point distribution function for the Gaussian ensemble defined
by the eigenvalue p.d.f

1

C

N∏
l=1

e−βx
2
l /2

∏
16j<k6N

|xk − xj |β (4.3)

and(2N)1/2 is the leading-order location of the largest eigenvalue. In this section (4.1) will
be explicitly verified forβ = 2, with the quantityν(N) shown to be given by

ν(N) = N1/3 21/3(
√

1+ Y − 1)2

(Y 2− (2+ Y )(√1+ Y − 1)2)1/3
. (4.4)

Onceν(N) has been determined, the validity of (4.1) forn = 1 can be established by
matching the one-body density in the neighbourhood of the smallest eigenvalue implied by
(3.24) with the asymptotic behaviour [For93]

ρsoft
(1) (x) ∼

x→−∞

√|x|
π

(4.5)

(this idea is motivated by a similar procedure used in [Nis96, KF97a]). Now the result in
(3.24) implies that for allβ

ρ(1)(N(1−
√

1+ Y )2− ν(N)x) ∼
N→∞
x→−∞

√|x|
π

(1+ Y )1/4
(1−√1+ Y )2

√
ν(N)

N
(4.6)

valid for 0� x � N/ν(N). Substituting (4.5) and (4.6) in (4.1) withn = 1, and using
(4.4), shows that (4.1) is satisfied provided

(1+ Y )1/4 21/2(
√

1+ Y − 1)

((2+ Y )(Y 2−√1+ Y − 1)2)1/2
= 1 (4.7)
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which is readily verified.
In preparation for verifying (4.1) forβ = 2 and generaln, we first recall some formulae

particular to that coupling. For the Laguerre ensemble (1.2) we have [Bro65]

ρsoft
(n) (x1, . . . , xn) = det[PN(xj , xk)]j,k=1,...,n (4.8)

where withLan(x) denoting the Laguerre polynomial of degreen

PN(x, y) := (xy)a/2 e−(x+y)/2cN
LaN(x)L

a
N−1(y)− LaN(y)LaN−1(x)

x − y
:= (xy)a/2 e−(x+y)/2

cN

N + a
LaN(x)yL

a′
N(y)− LaN(y)xLa′N(x)
x − y

cN = 0(1+N)
0(a +N). (4.9)

Furthermore, we know that [For93]

ρsoft
(n) (x1, . . . , xn) = det[Ksoft(xj , xk)]j,k=1,...,n (4.10)

where, with Ai(x) denoting the Airy function,

Ksoft(x, y) := Ai(x)Ai ′(y)− Ai(y)Ai ′(x)
x − y . (4.11)

Comparison of (4.10) and (4.8), and the fact that (4.1) is valid forn = 1 once (4.4) is
established shows that to verify (4.1) it suffices to establish the asymptotic formula

xNY/2 e−x/2LYNN (x)|x=N(1−√1+Y )2−ν(N)X ∼
N→∞

kN(Y )Ai(X) (4.12)

with ν(N) given by (4.4) andµ fixed. There is no need to specifykN(Y ), as its value is
uniquely determined by (4.5) and (4.6). Indeed, substituting (4.12) in (4.9), then substituting
the resulting expression in (4.8) withn = 1, settingx = y and comparing with (4.1) for
x →−∞ shows that

(kN(Y ))
2 = 1

(1−√1+ Y )2
ν(N)

cN
. (4.13)

In table 2 we give the numerical value of the ratio of the left-hand side to right-hand side
of (4.12) withkN(Y ) given by (4.13) for various values ofX, Y,N .

Table 2. Numerical values of the ratio of the left-hand side to right-hand side of (4.12) for
various values ofN and(X, Y ).

Value of (X, Y )
Value
of N (0, 1) (1, 2) (−1, 2)

50 1.0426 1.0567 0.9929
60 1.0402 1.0556 0.9938
70 1.0383 1.0544 0.9944
80 1.0367 1.0533 0.9949
90 1.0353 1.0523 0.9953

The asymptotic formula (4.12) can be derived by utilizing the fact thaty =
e−x/2x(α+1)/2LαN(x) satisfies the second-order differential equation

y ′′ +
(

2N + α + 1

2x
+ 1− α2

4x2
− 1

4

)
y = 0. (4.14)
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Substitutingα = YN , x = N(1−√1+ Y )2−ν(N)X, shows that for largeN (4.14) reduces
to

y ′′ − 1

2(1−√1+ Y )6 (Y
2− (2+ Y )(1−√1+ Y )2) (ν(N))

3

N
xy = 0. (4.15)

With ν(N) given by (4.4), this equation readsy ′′ − xy = 0 and its unique solution which
decays asX→−∞ is y = kN(Y )Ai(X), thus establishing (4.12).

4.2. Distribution of the smallest eigenvalue

In principle, knowledge of then-point distributions allows the calculation of other statistical
quantities such as the distribution of the smallest eigenvalue. This together with the above
results implies that, after appropriate change of origin and scale, the PDF of the smallest
eigenvalue in the Laguerre ensemble witha = YN equals, in theN →∞ limit, the PDF for
the largest (or equivalently smallest) eigenvalue in the Gaussian ensemble (4.3). Forβ = 2,
this can be explicitly verified from the nonlinear equations characterizing the respective
PDFs due to Tracy and Widom [TW94a, TW94b].

Let E(x) denote the probability that the interval(0, x) in the Laguerre ensemble (1.2)
with β = 2 contains no eigenvalues, and let

σ(x) = x d

dx
logE(x). (4.16)

Then it has been derived in [TW94b] thatσ(x) satisfies the nonlinear equation

(xσ ′′)2 = 4x(σ ′)3+ σ 2+ (2a + 4N − 2x)σσ ′ + (a2− 2ax − 4Nx + x2)(σ ′)2− 4σ(σ ′)2.
(4.17)

Also, let Ẽ(x) denote the probability that there are no eigenvalues between(x,∞) in the
(infinite-dimensional) Gaussian ensemble (4.3) with coordinates as in (4.2). Then it was
derived in [TW94a] that the quantity

R(x) := d

dx
log Ẽ(x) (4.18)

satisfies the nonlinear equation

(R′′)2+ 4R′((R′)2− xR′ + R) = 0. (4.19)

As the PDF for the smallest (largest) eigenvalue is simply related toE(x) (Ẽ(x)) by
differentiation, we see that the differential equation (4.17) characterizes the PDF for the
smallest eigenvalue in the Laguerre ensemble withβ = 2, while (4.19) characterizes the
limiting form of the PDF of the eigenvalue at the spectrum edge of the Gaussian ensemble.
(Of course boundary conditions must be specified; these follow from the small (large)x

behaviour of the density.) The results of the previous subsection imply that

lim
N→∞

E(N(
√

1+ Y − 1)2− ν(N)x)∣∣
a=YN = Ẽ(x). (4.20)

Indeed, a straightforward calculation using the explicit form (4.4) ofν(N) shows that after
changing variablesx 7→ N(

√
1+ Y − 1)2− ν(N)x in (4.17) and introducing the function

σ̃ (x) := 1

ν(N)
σ(N(

√
1+ Y − 1)2− ν(N)x) (4.21)

the differential equation (4.17) reduces down to (4.19) withR = σ̃ . This is precisely what
is required by (4.20).
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